1,161 research outputs found

    Unified continuum approach to crystal surface morphological relaxation

    Full text link
    A continuum theory is used to predict scaling laws for the morphological relaxation of crystal surfaces in two independent space dimensions. The goal is to unify previously disconnected experimental observations of decaying surface profiles. The continuum description is derived from the motion of interacting atomic steps. For isotropic diffusion of adatoms across each terrace, induced adatom fluxes transverse and parallel to step edges obey different laws, yielding a tensor mobility for the continuum surface flux. The partial differential equation (PDE) for the height profile expresses an interplay of step energetics and kinetics, and aspect ratio of surface topography that plausibly unifies observations of decaying bidirectional surface corrugations. The PDE reduces to known evolution equations for axisymmetric mounds and one-dimensional periodic corrugations.Comment: 5 pages, 1 figur

    The dependence of strange hadron multiplicities on the speed of hadronization

    Get PDF
    Hadron multiplicities are calculated in the ALCOR model for the Pb+Pb collisions at CERN SPS energy. Considering the newest experimental results, we display our prediction obtained from the ALCOR model for stable hadrons including strange baryons and anti-baryons.Comment: 8 pages, LaTeX in IOP style, appeared in the Proceedings of Strangeness'97 Conference, Santorini, April 14-18 1997, J. of Physics G23 (1997) 194

    Anisotropic diffusion in continuum relaxation of stepped crystal surfaces

    Full text link
    We study the continuum limit in 2+1 dimensions of nanoscale anisotropic diffusion processes on crystal surfaces relaxing to become flat below roughening. Our main result is a continuum law for the surface flux in terms of a new continuum-scale tensor mobility. The starting point is the Burton, Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps whose motion drives surface evolution. Our derivation is based on the separation of local space variables into fast and slow. The model includes: (i) anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps; (ii) diffusion of atoms along step edges; and (iii) attachment-detachment of atoms at step edges. We derive a parabolic fourth-order, fully nonlinear partial differential equation (PDE) for the continuum surface height profile. An ingredient of this PDE is the surface mobility for the adatom flux, which is a nontrivial extension of the tensor mobility for isotropic terrace diffusion derived previously by Margetis and Kohn. Approximate, separable solutions of the PDE are discussed.Comment: 14 pages, 1 figur

    Alignement experience in STAR

    Get PDF
    The STAR experiment at RHIC uses four layers of silicon strip and silicon drift detectors for secondary vertex reconstruction. An attempt for a direct charm meson measurement put stringent requirements on alignment and calibration. We report on recent alignment and drift velocity calibration work performed on the inner silicon tracking system

    Pair excitations and the mean field approximation of interacting Bosons, I

    Full text link
    In our previous work \cite{GMM1},\cite{GMM2} we introduced a correction to the mean field approximation of interacting Bosons. This correction describes the evolution of pairs of particles that leave the condensate and subsequently evolve on a background formed by the condensate. In \cite{GMM2} we carried out the analysis assuming that the interactions are independent of the number of particles NN. Here we consider the case of stronger interactions. We offer a new transparent derivation for the evolution of pair excitations. Indeed, we obtain a pair of linear equations describing their evolution. Furthermore, we obtain apriory estimates independent of the number of particles and use these to compare the exact with the approximate dynamics

    Metal-semiconductor-metal photodetectors on a GeSn-on-insulator platform for 2 µm applications

    Get PDF
    In this work, the metal-semiconductor-metal photodetectors were demonstrated on the Ge0.91Sn0.09-on-insulator (GeSnOI) platform. The responsivity was 0.24 and 0.06 A/W at wavelengths of 1,600 and 2,003 nm, respectively. Through a systematic study, it is revealed that the photodetectors can potentially detect wavelength beyond 2,200 nm. The dark current density was measured to be 4.6 A/cm2 for GeSnOI waveguide-shaped photodetectors. The 3 dB bandwidth was observed to be 1.26 and 0.81 GHz at 1,550 and 2,000 nm wavelengths, respectively. This work opens up an opportunity for low-cost 2 µm wavelength photodetection on the GeSn/Ge interface-free GeSnOI platform

    Neutral magic-angle bilayer graphene: Condon instability and chiral resonances

    Full text link
    We discuss the full optical response of twisted bilayer graphene at the neutrality point close to the magic angle within the continuum model. (i) First, we define the full optical response consistent with the underlying D3D_3 symmetry, yielding the total, magnetic, and chiral response that transform according to the irreducible representations A1A_1, A2A_2, and EE, respectively. Then, we numerically calculate the dissipative and reactive response for twist angles around the magic angle θm\theta_m and comment on the possibility of a Condon instability. (ii) Second, we numerically calculate the full optical response {\it almost at} θm\theta_m. The total response is characterized by three universal plateaus which can be obtained from an analytical calculation. The magnetic and the chiral response, however, is given by corresponding non-universal plateaus depending on the twist angle θ\theta via the dimensionless parameter αθmθ\alpha\sim\theta_m-\theta. (iii) Following the discussion on the large magnetic response, we calculate the plasmonic excitations at the neutrality point inside the optical gap of relaxed twisted bilayer graphene. We find that acoustic plasmons extend over almost the whole optical gap and carry the largest oscillator strength. (iv) Finally, we discuss symmetry relations for the response functions as function of the chemical potential and highlight the consequences of the approximate particle-hole symmetry of the continuum model for twisted bilayer graphene. We then discuss a detailed balance relation where the chiral response at charge neutrality can be understood in terms of electron (hole) transitions for which the initial (final) states are energetically closer to charge neutrality than the final (initial) states.Comment: 17 pages, 7 figure

    Drift Chamber Utilizing Microstrip Readout for Testing a New Micro TPC Concept

    Get PDF
    A drift chamber type radiation detector is being used to examine design criteria for a new type of detector called a micro Time Projection Chamber (micro TPC) which is being proposed for use in high energy nuclear physics experiments. The main advantage of the micro TPC detector is its very low radiation thickness compared to its silicon counterpart. The micro TPC is a charged-particle detector which willbe optimized for good two track resolution which is needed inahigh track density environment. Such performance requires low electron diffusion and high resolution readout. The diffusion willbe reduced bylimiting the drift distance to 15 cm and by using a low diffusion gas such as dimethyl ether. High resolution willbe obtained by using a new readout technology called microstrips. Microstrips are a recent development using photolithography techniques that allow the creation of anodes a few microns in width with submicron precision. The main purpose of this test chamber is to demonstrate the feasibility of a micro TPC design using a low diffusion gas and to insure the sufficient signal remains after electron attenuation. The driftchamber design and the proposed testingprocedures are described

    Hadronization of massive quark matter

    Get PDF
    We present a fast hadronization model for the constituent quark plasma (CQP) produced in relativistic heavy ion collisions at SPS. The model is based on rate equations and on an equation of state inspired by the string phenomenology. This equation of state has a confining character. We display the time evolution of the relevant physical quantities during the hadronization process and the final hadron multiplicities. The results indicate that the hadronization of CQP is fast.Comment: 12 pages, Latex, 2 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199
    corecore